Grop Alternatives for Declining Water Resources

Dr. Sangu Angadi Crop Stress Physiologist New Mexico State University Agricultural Science Center at Clovis

angadis@nmsu.edu 575-405-7598

Outline

- Introduction
- Current & Future Challenges
- Why Alternative Crops?
- What Crops?
- Lessons Learned
 - Canola Research
 - Safflower Research

Summary

Current and Future Challenges

- Ogallala Aquifer/Irrigation Situation
- Uncertain Rainfall
- Wind
- Temperature
- Future Climate

Ogallala Water Situation

Ogallala Water Situation

(From Google Earth)

Ogallala Water Situation

Hectares Irrigated by Method - USA

Source: 1998, 2003, 2008 Farm and Ranch Irrigation Surveys USDA, National Agricultural Statistics Service (2012 estimates by Valmont Irrig.)

USGS

Low and Uncertain Rainfall

Seasonal Wind Patterns

Abiotic Stresses – Wind

(Clovis, 05/28/13)

Daily Wind Velocity

Abiotic Stresses – Wind

Sand Blasting

Reseeding Or >50% evaporation

Tumble Weed Attack

(CNJ, Clovis, Jan 28, 2014)

OF CLOVID

Temperature Extremes

Temperature Extremes: Cold!!!

Temperature Extremes

Multiple Abiotic Stresses (Clovis, 2013)

Why Alternative Crops?

- Improve Crop Diversity
- Rotational Benefits
- Buffer Seasonal Extremes
- Natural Resources Conservation
- Sustainable Use of Limited Resources

Why Alternative Crops? (contd)

- Improve Resource Use Efficiency
- Value Addition & Virtual Water
- Changing Consumer Demand
- Opportunistic or Alternative Uses
- Market Fluctuation

Improve Crop Diversity

Rotational Benefits: Wheat Yields

W-W 10bu/ac

C-W 25bu/ac

Same Planting Date, Variety, and Fertility in the middle of the drought "Canola production makes wheat farmer a better wheat farmer"....

Rotational Benefits: Weed Control

Roundup

Osprey

No herbicide

(WSU, FS068E)

Buffer Seasonal Extremes:

'Low and high rainfall', 'hail storm', 'wind storm', 'heat and freeze temperatures'

Hail Storm, Clovis (June 8, 2014)

Canola and Wheat at Harvest

≈ 50% canola yield (combined)

Not harvested

Safflower Hail Damage and Regrowth

Hail Damaged (June 9, 2014)

Regrowth vs. Replanted (Aug 17, 2014)

Alternative Crops: Hail Damage

Corn: Hail damaged

Safflower: Zero Hail damage

Canola: Hail damaged

(Clovis, 8/8/2012)

Canola Freeze Injury & Recovery

Late Spring Frost (Mar 28, 09) Freeze Injury

(Apr 17, 09)

Recovery

(Apr 30, 09)

(Clovis, NM)

Multiple Abiotic Stresses (Clovis, 2013)

Herbicide Drift Injury and Recovery

Guar (Drift from neighbor, unknown herbicide, July 10, 2014)

Guar (Recovered, Aug 15, 2014)

Safflower is fairly tolerant to herbicide drift and recovers very well.

We have not seen herbicide drift issues with Winter Canola.
Resource Use Efficiency

Shallow Rooted Crop

0

000

Nutrients, water

Deep Rooted Crop

Multispecies cover cropping uses similar principle.

Value Addition and Virtual Water Movement

Changing Consumer Demand:

'healthy food', 'more fiber', 'nutrient profile', 'disease prevention'

Changing Consumer Demand:

Food for 'Energy, etc' vs. 'Nutrition, healthy living'

Healthy Chips Isle: Market Place, Lubbock

OPPED MULTIGRAIN CHIP

ITED . CHIA . QL

Breakfast I am tired of

COR ACORARS

AXMI Golden emon axseed Spread NETWI 6 5 OZ |2419 2. 12559 **Flax Spread:** Laxmi Delights

Savory

dried Tomato

1 WT. 8.5 OZ. (2419)

Oatmeal Oatmeal

Oat Products: Sams, Lubbock

Opportunistic or Alternative Uses:

'guar for fracking', 'canola meal for cattle'

What Crops??

- What is my ideal crop??
- Spring vs. Winter Crops
- Dual Purpose Crops
- Low Input Requirement and Stress
 Tolerant Crop

Ideal Crop for the Region

Biomass Crops Water Use

Alternate Biodiesel Crops

Chia

Sesame

Lessons Learned

- Winter Crops Irrigation Trial
- Dual Purpose Canola Production
- Safflower Water Management

Winter Canola: Deficit Irrigation Management

- Develop water use and yield relationships for oilseed crops
- Compare water productivity with winter wheat

Canola Seeding Date (Our Experience)

Winter Canola Root System and Water Needs

(Clovis, 2014)

Water Extraction

(Winter Canola & Wheat)

(Clovis, 2009)

Water Use and Forage Production

By Winter Canola & Wheat

Dual Purpose Crops

Why Canola!!!

Winter Survival Canola vs. Wheat

Forage Productivity

Forage Quality

Forage Nitrate Content

Grain Production

Winter Canola: Farmer Experience

Tips for grazing

- Use untreated canola seed.
- Adjust rate so new growth is consumed, and remove cattle when 50% of original growth remains.
- Have a minimum of 25% high-fiber hay.
- Treat as a concentrate use a bloat preventer.
- Closely monitor livestock.
- Test forage for nitrate.
- Graze after a hard freeze.

A New Generation of Desert Crops

Safflower

March att in

学学

Pre-season and in-season irrigation management in safflower

- Experimental Design: Split Plot
 - Main plot: Soil Profile
 - 1. Pre-irrigation (**PI**) (160 mm)
 - 2. No-pre-irrigation (**NPI**) (depleted soil profile)
 - Sub plot: cultivars and irrigation levels
 - Cultivars: 2 (\$333 & PI8311)
 - Irrigation levels: 5
 - I₁, I₂, I₃, I₄ and I₅
 - (75, 150, 225, 300 and 375 mm)

Drip & central pivot irrigation

Safflower response to pre- and in-season irrigation

Irrigation Levels

Water Use Efficiency

Yield and Yield Attributes

	2012				2013			
Treatment	Heads plant ⁻¹	Seeds head ⁻¹	Seed yield (kg ha ⁻¹)	Oil yield (kg ha ⁻¹)	Heads plant ⁻¹	Seeds head ⁻¹	Seed yield (kg ha ⁻¹)	Oil yield (kg ha ⁻¹)
PI	7.3 a	25.9 a	1459 a	525.2 a	5.5 a	23.6 a	1284 a	—
NPI	5.5 b	22.7 b	1047 b	372.0 b	3.7 b	18.3 b	589 b	—
Irrigation levels								
I ₁	4.9 d	21.2 c	880 d	319.9 d	3.2 d	18.4 b	510 c	—
I ₂	5.3 d	22.7 bc	1079 cd	391.7 cd	4.3 c	19.1 b	584 c	—
I ₃	6.2 c	24.6 ab	1253 bc	447.2 bc	4.6 c	21.5 a	936 b	—
I ₄	7.1 b	26.1 a	1426 ab	513.0 ab	5.2 b	22.3 a	1269 a	—
I_5	8.4 a	26.7 a	1626 a	571.2 a	5.8 a	23.7 a	1383 a	—
Cultivars								
PI8311	6.6 a	22.7 b	1280 a	458.8 a	4.6 a	21.9 a	995 a	—
S333	6.2 a	25.9 a	1226 a	438.5 a	4.6 a	20.0 b	878 b	
Conclusions

- Pre-irrigation was beneficial to improve WUE and HI, however increase in irrigation level does not always aid to WUE and HI.
- Safflower yield responded positively to preirrigation and increased irrigation levels in both the years.
- Increase in yield was due to increase in head numbers, seeds per head and photosynthesis.

Safflower: Farmer Experience

Thank You

